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Introduction

The aim of this talk was to establish the categories of presheaves and sheaves and
to show that those are abelian categories. The definitions and results of the last
talks are stated in the language of category theory and the notions of kernels and
cokernels as well as exact sequences are introduced.

For the entire transcript let X a topological space. Furthermore all sheaves and
presheaves are considered as sheaves and presheaves of abelian groups over X.

The categories PreshX and ShvX

To remind the definition of basic category-theoretical terms and some definitions
from the last talks we give a few examples.

Examples 1. (Categories)

• PreshX : The category of presheaves over X with the presheaves over X as objects
and presheaf morphisms as morphisms. For F, G presheaves a presheaf morphism
f : F → G is given by maps f (U) : F(U) → G(U) for all U ⊆ X such that for
each V ⊆ U open in X the following diagram commutes:

Note that the restriction ρU
V on the left is the

restriction map of F and the restriction ρ′UV
on the right is the restriction map of G

F(U) G(U)

F(V) G(V)
f (V)

f (U)

ρU
V ρ′UV

• ShvX : The category of sheaves over X is denoted as ShvX . Its objects are the Therefore ShvX is a full subcategory of
PreshXsheaves over X and the presheaf morphisms between sheaves are the morphisms.

• The category of sheafspaces over X: ShspX

• A preordered set Λ can be seen as a category:
The objects of this category are the elements of Λ and for two objects µ, λ we
define

Hom(µ, λ) =

singleton µ ≤ λ

∅ else
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Examples 2. (Functors)

• The inclusion functor ShvX → PreshX which sends each sheaf to its underlying
presheaf.

• L : PreshX → ShspX from last talk

• Γ : ShspX → ShvX from last talk. For these we checked the conditions for
functoriality in the last talk.

• As the composition of two functors is again a functor, we get a functor ΓL :
PreshX → ShvX which is called the "sheafification functor"

• The functor Γ(−, U) : ShvX → Ab, F 7→ F(U) for an open set U ⊆ X.

• Presheaves themselves can be seen as functors:
Let U the set of open subsets of X. U is preordered by "⊆". Hence we can view U U denotes the dual category of U
as a category. A presheaf corresponds to a functor Uop → Ab.

Examples 3. (Natural transformations)

• The functor LΓ is naturally equivalent to idShspX
.

• There is a natural transformation idPreshX ⇒ ΓL and ΓL|ShvX
∼= idShvX . To be more precise using terms of category

theory: ΓL is left adjoint to the inclusion
functor• presheaf morphisms can be expresses as natural transformations:

For two presheaves F, G understood as functors by the last example the condition
of naturality of η is given by

F(U) G(U)

F(V) G(V)
η(V)

η(U)

F(iV→U) G(iV→U)

This corresponds with the definition given in ??

Remark 4. From the last example we get an alternate description of the category of
presheaves over X:

PreshX = Fun(Uop, Ab)

Next our aim is to show that PreshX and ShvX are abelian categories.

Definition 5. (Preadditive category)
A category C is called preadditive if for each A, B ∈ ObC the set HomC(A, B) is
an abelian group and composition is linear, i.e. for f , g : A → B and h : B → C
the composition h ◦ ( f + g) = h ◦ f + h ◦ g and for f : A → B and g, h : B → C
analogously (g + h) ◦ f = g ◦ f + h ◦ f .

We want to construct such a group structure on the sets of presheaf morphisms:

2



Definitions 6. Let f , g : F → G presheaf morphisms with F, G ∈ PreshX . For all
U ⊆ X open we define:

Note that G(U) is an abelian group, hence
addition, zero and negatives are well
defined in G(U)

• ( f + g)(U) : F(U)→ G(U), s 7→ f (s) + g(s)

• 0(U) : F(U)→ G(U), s 7→ 0 ∈ G(U)

• − f (U) : F(U)→ G(U), s 7→ − f (s)

Those are well defined presheaf morphisms. Therefore we have a well defined group
structure on the morphism sets HomPreshX (F, G)

Definition 7. The zero sheaf 0 is the sheaf {0}X , i.e. 0(U) is a trivial abelian group
for all U ⊆ X open.

Remark 8. Obviously Hom(F, 0) and Hom(0, F) are trivial abelian groups too. There-
fore the zero sheaf is a zero object in the categories PreshX and ShvX .

As last part of this section we want to establish an example of a sheaf morphism,
that will lead us through the rest of this talk.

Example 9. (The exponential sheaf morphism)
Let Ω ⊆ C open, OΩ the sheaf of C-valued holomorphic functions, O∗Ω the sheaf of
C∗ = C\{0}-valued holomorphic functions.

Note that C is considered as an abelian
group by addition, but C∗ as an abelian
group by multiplication

Then we can define

exp : OΩ → O∗Ω
exp(U) : OΩ(U)→ O∗Ω(U)

f 7→ exp(i2π f )

This is a well defined sheaf morphism as exp(U) is a group homomorphism:

f + g 7→ exp(i2π( f + g)) = exp(i2π f ) ∗ exp(i2πg)

Kernels and monomorphisms

The aim of this section is to define the kernel of a (pre)sheaf morphism and monomor-
phisms. We will see that for sheaves it doesn’t matter if you take the kernel of those
sheaves considered as sheaves or as presheaves. This will not be the case for coker-
nels later.

Definition 10. For presheaves F and G let f : F → G a presheaf morphism. Then
define:

K(U) := ker f (U) = s ∈ F(U)| f (U)(s) = 0 (1)

This defines a sheaf as for V ⊆ U open in X, s ∈ K(U) we have:

f (V)ρU
V (s) = ρU

V ( f (U)(s)) = ρU
V

This presheaf is denoted as ker f and called the kernel of f .
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Remark 11. We have a natural morphism ker f → F and the composition ker f →
F

f
=⇒ G is the zero morphism. Both of these remarks follow immediately from the

definition (note that for each U ker f (U) is a subgroup of F(U)).

The usual universal property of kernels from general category theory holds for
presheaves as well:

Proposition 12. (Universal property of a kernel)
For each presheaf H and presheaf morphism g : H → F s.t. f ◦ g = 0 there is a unique
morphism H → ker f s.t. the following diagram commutes:

H

ker f F G

0g

f

∃!

Proposition 13. If F, G are sheaves, then ker f is also a sheaf.

Proof. The monopresheaf condition is inherited directly from F.
Let U = ∪λ∈ΛUλ and sλ ∈ ker( f )(Uλ) such that the compatibility conditions are
given on all Uλ ∩ Uµ. Then - as F is a sheaf - there is an s ∈ F(U) such that
∀λ ∈ Λ : ρU

Uλ
(s) = s. Hence for s′ = f (U)(s) ∈ G(U) the restriction ρU

Uλ
(s′) = 0 for

all λ ∈ Λ. Using the monopreasheaf axiom for G this results in s′ = 0 and hence
s ∈ ker( f )(U).

Remark 14. Actually we only used the monopresheaf axiom of G - the glueing axiom
is only necessary for F.

Theorem 15. (Characterization of monomorphisms)
Let f : F → G a presheaf morphism. Then the following conditions are equivalent:

i. f is an monomorphism - i.e. for two presheaf morphisms g, h : H → F, f ◦ g = f ◦ h
implies g = h.

ii. ∀U ⊆ X open f (U) is injective

iii. ker f = 0

These imply and are equivalent if F is a monopresheaf:

iv ∀x ∈ X fx is bijective.

Proof. i.⇔ iii. This follows from general category theory.
ii. ⇔ iii. This follows immediately from the definition of the kernel, as f (U) is
injective iff ker f (U) = 0 as f (U) is a group homomorphism.
ii. ⇒ iv. Let t ∈ Fx s.t. fx(t) = 0. We have to show that in this case already t = 0.
There is an open set U and a section s ∈ F(U) such that sx = t. Then we have:

( f (U)(s))x = 0
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Again we find an open set V ⊆ U such that

0 = ρU
V ( f (U)(s)) = f (V)ρU

V (s)

As f (V) is injective, we get ρU
V = 0 and therefore t = 0.

iv.⇒ ii. Now let F a monopresheaf. Let s ∈ F(U) s.t. f (U)(s) = 0 ∈ G(U). We have
to show, that s = 0. For all x ∈ X we get fx(sx) = ( f (U)(s))x = 0 and hence sx = 0
as the fx are injective. Using the monopresheaf axiom we conclude that s = 0.

Definition 16. Let f : F ↪−→ G a (pre)sheaf monomorphism with F and G (pre)sheaves.
In this case we call F a sub(pre)sheaf of G or - more precisely - F represents a
sub(pre)sheaf of G. Two (pre)sheaves F, F′ represent the same sub(pre)sheaf of G if
there is an isomorphism F → F′ s.t. the followng diagram commutes:

F

G

F′

˜

If F = ker f as subpresheaves of G we call F a kernel of f .

Remark 17. Subobjects can be defined in arbitrary categories.

Corollary 18. Let F a monopresheaf. Then F is a subpresheaf of a sheaf, namely its sheafifi-
cation.

Proof. In the last talk we proofed that for a presheaf F the maps Fx → (ΓLF)x are
isomorphisms - and therefore injective - for all x ∈ X. Using ?? i. ⇔ iv. we get the

ΓLF is the sheafification of F.

corollary.

Proposition 19. Let f : F → G a presheaf morphism.
Then (ker f )x = ker fx for all x ∈ X.

Proof.

t ∈ (ker f)x ⇐⇒ ∃ open U 3 x and s ∈ Ker(f)(U) such that t = sx

⇐⇒ ∃ open U 3 x and s ∈ F(U) such that t = sx and

⇐⇒ fx(U)(s) = 0

Proposition 20. Let F, F′ subsheaves of a sheaf G. Then:

F = F′ ⇔ Fx = F′x ∀x ∈ X

This last statement is given without proof - for reference see the chapter in Ten-
nison. There a preorder for the subsheaves is defined first, which I omitted in the
talk.

Lastly we go back to our example of the exponential sheaf morphism and calculate
the kernel:
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Example 21. For each U ⊆ X open we have:

ker(exp(U)) = { f ∈ OΩ | exp(i2π f ) = 0}
= { f ∈ OΩ | f is Z-valued}
= { f : U → Z, f locally constant}

Therefore ker(exp) is the constant sheaf ZΩ.

Cokernels and epimorphisms

In contrast to kernels the cokernels are not the same in the categories of sheaves and
presheaves.

Definition 22. Let f : F → G a presheaf morphism, F and G presheaves. Define:

C(U) := G(U)/ Im f (U)

This defines a presheaf as for the restrictions we have:

For V ⊆ U open in X we have the induced restriction map

ρU
V : G(U)→

C(V)︷ ︸︸ ︷
G(V)/ Im f (V)

Then for all s ∈ F(U) by the naturality of the restriction maps:

ρU
V ( f (U)(s)) = f (V)ρU

V (s) ∈ Im f (V)

Therefore the restrictions ρ̄U
V : C(U)→ C(V) are well defined.

This presheaf is called the presheaf cokernel and is denoted by PCok( f ).

Remarks 23. There are natural morphisms G → PCok( f ) and the composition F →
G → PCok( f ) is the zero morphism, which follows immediately from the definition..

Proposition 24. (Universal property)
The universal property of the presheaf cokernel is given by:
For all presheaves H and presheaf morphisms g : G → H s.t. g ◦ h = 0 there is a unique
presheaf morphism PCok( f )→ H s.t. the following diagram commutes:

H

F G PCok( f )f

g ∃!0

Definition 25. For sheaves F and G and a sheaf morphism F : F → G the sheaf
cokernel is defined as the sheafification of the presheaf cokernel:

SCok(F) := ΓLPCok( f )
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Remark 26. • As for the presheaf cokernel there are natural morphisms G → SCok( f )
and the composition F → G → SCok( f ) is the zero morphism.

• The sheaf cokernel satisfies the same universal property as the presheaf cokernel
with H a sheaf instead of a presheaf. This is an immediate consequence from the
universal property of the sheafification.

Analogously to the characterization of monomorphisms in the last section we can
give a characterization of epimorphisms in the categories of sheaves and presheaves.

Theorem 27. (Characterization of presheaf epimorphisms)
Let f : F → G a presheaf morphism. Then the following conditions are equivalent:

i PCok( f ) = 0

ii ∀U ⊆ X open f (U) is surjective

iii f is an epimorphism in PreshX - i.e. for presheaf morphisms g, h : G → H, g ◦ f = h ◦ f
implies g = h.

Proof. i⇔ ii: This follows from the definition as PCok( f )(U) = G(U)/ Im f (U) and
therefore PCok( f ) = 0⇔ Im f (U) = G(U).
i⇔ iii: This is true for general abelian categories.

Theorem 28. (Characterization of sheaf epimorphisms)
Let f : F → G a sheaf morphism. Then the following conditions are equivalent:

i SCok( f ) = 0

ii ∀x ∈ X : (PCok( f ))x = 0

iii fx is surjective ∀x ∈ X

iv f is an epimorphism in ShvX .

Additionally all of the conditions from the last theorem imply these. I.e. a presheaf morphism
between sheaves is automatically a sheaf morphism.

Proof. i.⇔ iv. follows from general category theory.
i.⇔ ii.

SCok( f ) = 0⇔ (SCok( f ))x = 0 ∀x ∈ X

⇔ (PCok( f ))x = 0 ∀x ∈ X

ii.⇔ iii.

PCok( f )x = 0⇔ ∀ open U 3 x and s ∈ PCok( f )(U),

∃ open V with U ⊇ V 3 x and ρU
V (s) = 0

⇔ ∀ open U 3 x and s ∈ G(U),

∃ open V with U ⊇ V 3 x and ρU
V (s)ε Im f (V)
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⇔ fx is surjective.

The last part of the statement is trivial as for example i. of the last proposition
obviously implies ii.. (PCok f = 0⇒ (PCok( f ))x = 0 ∀x ∈ X)

For a sheaf morphism the presheaf cokernel is in general not the same as the
sheaf cokernel. This is because the presheaf cokernel of a sheaf morphism is not
always a sheaf as is seen in the following example, where we calculate the sheaf and
presheaf cokernel of the esponential sheaf:

Example 29. Firstly we calculate the presheaf cokernel of exp. For U ⊆ X open, we
have:

PCok(exp(U)) =
O∗Ω(U)

exp(OΩ(U))
=

{ f : U → C∗ | f holomorphic}
{ f : U → C∗ | ∃g : U → C hol., s.t. f = exp(i2πg)}

This is in general non-empty as the exponential function is not globally invertible so
for example idC∗ is a nontrivial element of PCok(exp(U)) for large enough U.
On the other hand the exponential function is at least locally invertible, so ∀x ∈ C∗

we find an open set x ∈ U ⊆ C∗ s.t. PCok(exp(U)) = 0 and therefore the stalk
(PCok( f ))x = 0. By the last theorem then also SCok( f ) = 0.
This means, that exp is an epimorphism in the category ShvX but not in PreshX .

Using the earlier characterizations of monomorphisms we can characterize iso-
morphisms:

Corollary 30. (Characterization of isomorphisms)
Let f : F → G a presheaf morphism. Then the following conditions are equivalent:

i. f is an isomorphism

ii. ∀U ⊆ X open f (U) is bijective

iii. f is an monomorphism and a presheaf epimorphism

If f is a morphism of sheaves:

iv. f is an monomorphism and a sheaf epimorphism

v. ∀x ∈ X fx is bijective.

Proof. i.⇔ iii. and i.⇔ iv. are true in arbitrary abelian categories.
ii. ⇔ iii. follows from the characterization of monomorphisms and epimorphisms
in PreshX (see ??, ??)
iv⇔ v. follows from the characterization of monomorphisms and epimorphisms in
ShvX (see ??, ??)

Proposition 31. Let f : F → G a presheaf morphism. Then

∀x ∈ X : (PCok( f ))x = Cok( fx) = Gx/ Im fx

If f is a morphism of sheaves, then:

∀x ∈ X : (SCok( f ))x = Cok( fx)
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For a proof of this proposition see Tennison 3.4.11.

Analogously to the sub(pre)sheaf we can define quotient presheaf for epimor-
phisms:

Definition 32. (Quotient presheaf)
Let f : F → G a presheaf epimorphism. Then G is called a quotient presheaf of F.
Let f : F → G a sheaf epimorphism. Then G is called a quotient sheaf of F.
Two (pre)sheaves are said to represent the same quotient presheaf if there is an
isomorphism s.t. the diagram:

G

F

G′

commutes.

Theorem 33. 1. Every sub(pre)sheaf is a kernel of a (pre)sheaf morphism.

2. Every quotient (pre)sheaf is a cokernel of a (pre)sheaf morphism.
Therfore in the categories PreshX and ShvX every monomorphism is a kernel and every

epimorphism is a cokernel.

Proof. 1. Let f : F → G an (pre)sheaf monomorphism. Then F = ker(G → PCok( f )).

2. Let f : F → G an (pre)sheaf epimorphism. Then F = PCok(ker( f )→ F).

Therefore every condition for ShvX and PreshX to be abelian categories is checked
(except for the existence of biproducts which is omitted here - see the chapter in
Tennison for reference):

Definition 34. (Abelian category)
A preadditive category C is called abelian, if:

• C has a zero object. (In our case the zero sheaf)

• C has kernels and cokernels of all morphisms

• Every monomorphism is a kernel, every epimorphism is a cokernel in C

• C has biproducts of each pair of objects - i.e. a objeact that satisfies the universal
properties of products and coproducts at the same time.

There are definitions of "additive categories" found in literature that differ from
Tennison - most of them already requirethe existence of biproducts for the additive
category although in Tennison a additive category is only a preadditive category
with zero object.

9



Exact sequences of (pre)sheaves

Before we can define the notion of an exact sequence of (pre)sheaves we have to
define what the image of a (pre)sheaf morphism is. Unfortunately like with the
cokernel the image differs in the to categories:

Definition 35. 1. Let f : F → G a presheaf morphism. The presheaf image is defined
as

PIm( f ) := ker(G → PCok( f ))

2. Let f : F → G a sheaf morphism. The sheaf image is defined as

SIm( f ) := ker(G → SCok( f ))

From general category theory we have the universal property of an image (which
holds for both definitions of images in their respective category):

Proposition 36. (Universal property of an image)
For each (pre)sheaf H and (pre)sheaf morphisms g : F → H and h : H → G s.t. f = h ◦ g
there is a unique morphism Im( f )→ H s.t. the following diagram commutes:

F G

Im( f )

H

f

g h

∃!

Definition 37. (Exact sequence)
Let

... F G H ...
f g

a sequence of presheaves.
The sequence is called exact at G as sequence of presheaves if PIm( f ) = ker(g) (as
subpresheaves of G).
The sequence is called exact at G as sequence of sheaves if SIm( f ) = ker(g) (as
subsheaves of G).
The sequence is exact as a sequence of (pre)sheaves if it is exact as sequence of
(pre)sheaves at all points.

Theorem 38. 1. The sequence F → G → H is an exact sequence of presheaves iff ∀U ⊆ X
open the sequence F(U)→ G(U)→ H(U) is exact (as a sequence of abelian groups).

2. The sequence F → G → H is an exact sequence of presheaves iff ∀c ∈ X the sequence
Fx → Gx → Hx is exact (as a sequence of abelian groups).

3. If F → G → H is a sequence of sheaves, which is exact as sequence of presheaves, it is
exact as sequence of sheaves too.
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Proof. 1. F
f−→ G

g−→ H is an exact sequence of presheaves
⇔ ker g = PIm( f )

⇔ For all U ⊆ X open: ker g(U) =

=Im f (U)︷ ︸︸ ︷
ker(G(U)→ G(U)

Im f (U)
)

⇔ For all U ⊆ X open: F(U)→ G(U)→ H(U) is exact.

2. The same steps as for 1. but on the level of stalks is used:

F
f−→ G

g−→ H is an exact sequence of sheaves
⇔ ker g = SIm( f )

⇔ For all x ∈ X: ker gx =

=Im fx︷ ︸︸ ︷
ker(Gx →

Gx

Im fx
)

⇔ For all x ∈ X: Fx → Gx → Hx is exact.

3. ker g = PIm( f ) ⇒ For all x ∈ X:

(ker g)x = (PIm( f ))x

= ker(Gx → PCok( f )x)

??
= ker(Gx → (SCok( f ))x)

= (SIm( f ))x

With the last theorem and a few theorems about exact sequences in Ab the cate-
gory of abelian groups, we get the following corollary:

Corollary 39. In the categories ShvX and PreshX we have:

a) 0→ F
f−→ G is exact iff f is an monomorphism.

b) F
f−→ G → 0 is exact iff f is an epimorphism.

c) For any morphism f : F → G the sequence 0 → ker f → F → G → Cok( f ) → 0 is
exact.

d) 0→ F f→ G
g→ H is exact⇔ f is a kernel of g.

e) F f→ G
g→ H→ 0 is exact ⇐⇒ g is a cokernel of f .

As last concept we will define the notion of an exact functor which will be needed
in the definition of (co)homology.

Definition 40. Let T : C → D a covariant functor between abelian categories C and
D. T is called exact if for each short exact sequence 0→ F → G → H → 0 in C the
sequence 0→ TF → TG → TH → 0 is exact.
It is called left exact if it only preserves the zero at the left side and right exact if it
only preserves the zero at the right side.
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Remark 41. From general category theory we know that T is exact iff it preserves all
exact sequences (not necessarily short ones).

Theorem 42. a) The inclusion functor ShvX ↪−→ PreshX is left exact.

b) The functor "sections over U" PreshX → Ab, F 7→ F(U), for an U ⊆ X open, is exact.

c) The functor Γ(−, U) : ShvX → Ab, F → Γ(F, U) is left exact.

Proof. a) Let 0→ F
f−→ G

g−→ H → 0 exact in ShvX . Then f is a kernel of g in ShvX

by Corollary ??. As the kernels in the categories are the same, f is also a kernel

of g in PreshX and by Corollary ?? 0 → F
f−→ G

g−→ H is an exact sequence of
presheaves.

b) This is precisely the first part of theorem ??.

c) This follows by composition of a) and c).

Remark 43. You could also proof, that the sheafification functor ΓL is exact. The
proof uses the fact that the direct limit is exact and therefore from an exact sequence
of presheaves we get an exact sequence on the level of stalks. But the stalks of
the presheaf and its sheafification are naturally isomorphic (last talk) so we get a
exact sequence of the stalks of the sheafification and using our previous results the
sequence of sheaves is then exact.

Using this terminology we can give a concise summary of our examples regarding
the exponential sheaf morphism:

Example 44. (The exponential sheaf sequence)
The sequence

0→ ZΩ → OΩ
exp−−→ O∗Ω → 1

is exact as a sequence of sheaves (but not as a sequence of presheaves).
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